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DERIVATION OF TRANSFER FUNCTIONS FOR A FLUID-
LOADED, MULTIPL-LAYER THICK PLATE SYSTEM

1. INTRODUCTION

Transfer functions are mathematical expressions that relate two physical quantities of a
system. When applied to mechanical systems, transfer functions model energy propagation
through the medium of a structure. This medium can be simple or complex, depending on the
type and composition of the structure. Typically, partial differential equations describe some
field quantity on the medium. A set of assumptions is made, and these partial differential
equations reduce to ordinary differential equations and then to algebraic equations. The end
result is an expression that is the quotient of two of the field quantities, frequently a system value
at some location in the field divided by an energy input into the field. These transfer functions
are useful in understanding system behavior, and they sometimes can be verified by
measurements at different locations in the structure.

This report derives six mathematical transfer functions of various thick plate systems.
First, two-dimensional equations of elasticity are derived and mathematical expressions for the
plate displacements and spatial derivatives of the plate displacements are calculated. Second, the
equations of motion of a single thick plate with a normal pressure load are then determined.
Third, the single plate is coupled with a fluid whose dynamics are governed by the wave
equation. This fluid contains an acoustic pressure that acts on the structure and changes the
dynamic behavior of the system. The response of this system is calculated. Fourth, the
equations of motion of two connected thick plates with a normal pressure load are determined.
This double (thick) plate allows for two different types of plate materials to be attached together.
Fifth, the fluid load is then coupled with the double thick plate and the response is calculated.
Sixth, the equations of motion of three connected thick plates with a normal pressure load are
determined. The triple (thick) plate allows for three different types of plate materials to be
attached together. Seventh, the fluid load is then coupled to the triple thick plate and the
response is calculated. In all cases, the thick plate equations of motion are verified by comparing
their transfer functions to a second transfer function derived using the thin plate theory calculated
with a very small plate thickness. This allows validation of the results using a second method of
modeling the response.

2. EQUATIONS OF ELASTICITY

. The transfer functions are derived by assuming that each thick plate is governed by the
equation (reference 1) ‘

2 : )
uV2u+(;{ +u)VVou=p-;—;, (D




where p is the density; A and u are the Lamé constants; ¢ is time; ® denotes a vector dot product;
u is the Cartesian coordinate displacement vector expressed as

[ux (x, y,Z,t)] |
u ={uy(x,y,z,t)}, 2
[uz(x,y,z,t)J

with subscript x denoting the direction parallel to the plates, y denoting the direction into the
plates, and z denoting the direction perpendicular to the plates. The modeled geometry and the
coordinate system of the plates are shown in figure 1. The symbol V is the gradient vector
differential operator written in three-dimensional Cartesian coordinates (reference 2) as

9419, .9, 3)

v=Zi+=Zi + 2
o ree Ty

with i denoting the unit vector in the x-direction, iy denoting the unit vector in the y-direction,

and i, denoting the unit vector in the z-direction; Vv is the three-dimensional Laplace operator
operating on vector u as

4)

2. _ o2, 2 - 2, -
Viu=Vaui +Viu,i +Vu i,
with V2 operating on scalar u as

Q... du. ..
X, 9.2 4 X,9.2 X,9.2 (5)

ax2 ayz 322 ?

and the term V eu is called the divergence and is equal to

2 _ _
v Uy z —VOVux,y,Z =

aZ'{x_*_al't)’_+_al"z ‘
x &y % ©

Veu=

The applied loading effects of the pressure in the absence of a fluid acting on the surface
of the plate are modeled as a structural load in sections 3, 5, and 7. The applied loading effects
of the pressure in the presence of a fluid acting on the surface of the plate are modeled as an

acoustic load in sections 4, 6, and 8. Note that P, A, and u are the properties of each specific
plate. :

The displacement vector u is written as

u=Vo+Vxy, @)



Plate 3

Plate 2

Plate 1 \

Figure 1. Modeled Geometry with Coordinate System

T~

where ¢ is a dilatational scalar potential, X denotes a vector cross product, and ¥ is an
equivoluminal vector potential expressed as

v, (x,y,2,1)
7={v, e pznt ®
WZ (‘x? y’Zat)

The problem is now formulated as a two-dimensional response (y = 0 and J())/dy= 0) problem.
Expanding equation (7) and breaking the displacement vector into its individual nonzero terms
yield , - ’
99(x,2,1) W, (x.2.0) ©)

o d

ux(xa Zat) =

and

u,(x,z,t)= 90 (x,2,1) + o, (x,2,1) '

oz ox

(10)




Equations (9) and (10) are next inserted into equation (1), which results in

2
éV%umo=i%%¢Q, (11)
and
9%y, (x,2,0)
VY, () =—27 ", (12)

on all material layers. Equation (11) is the dilatational component and equation (12) is the shear
component of the displacement field (reference 3). Correspondingly, the constants ¢ 4 and ¢, are

the complex dilatational and shear wave speeds, respectively, and are determined by
A+2
¢4 = ‘f———” , (13)
p

c. =& (14)

and

The relationship of the Lamé constants to the compressional and shear moduli is shown as

Ev
A= 1+v)1-2v)’ (15)

and 5
STt "o

where E is the complex compressional modulus (N/m?), G is the complex shear modulus (N/m?),
and v is the Poisson's ratio of the material (dimensionless).

The conditions of infinite length, two-dimensional response (y = 0), and steady-state
response are now imposed, allowing the scalar and vector potential to be written as

¢(x,2,1) = D(z)exp(ik, x)exp(ior), a7
and
v, (x,z.,t) =W(z)exp(ik x)exp(ior) (18)

where k,. is the wavenumber of excitation in the x-direction (rad/m), w is the frequency of

excitation (rad/s), and i is the square root of -1. Note that equations (17) and (18) are valid on
every layer.

Inserting equation (17) into equation (11) yields



2
+a*®(z) =0, (19)
dz* v
where
[ — 20
and
k=2 1)

Inserting equation (18) into equation (12) yields

v 2
YR | pry (=0, | (22)
dz

where

B=i2-i2, . (23)

and

k, =2 o (24)

The solution to equation (19) is

P(z) = Ak, ,w)exp(ioz) + B(k,, w)exp(-iaz), (25)
and the solution to equation (22) is

Y (z)=C(k,,w)exp(ifz) + D(k,,w)exp(-ifz), (26)

where A, B, C, and D are constants that are determined below. The displacements can now be
written as functions of the unknown constants. They are

u,(x,2,0) ={ ic[A(k,, w)exp(ioz) - B(k,,w)exp(-iaz) |+
ik, [C(k, ., 0)exp(fz) + D(k,,w)exp(—ifiz)] Jexp(ik, x)explicr), (27)

and

u, (x,2,0) ={ ik [Ak,. 0)expliaz) + Bk, w)exp(-iaz) -
iB[C(k,,w)exp(ifz) - D(k,,w)exp(-ifz)] Jexp(ik,x)exp(icr) . (28)




The solution to the constants is determined by fdrmulating the problem based on the number of
plates and the presence or absence of a fluid load. This is done in sections 3 - 8. Four
derivatives of equations (27) and (28), which are used in the solution of the constants, are

K (5 2.0)

ox { -kilace, w)explioe) + Bk, 0)exp(-iaz))+

pk.[C (k,,w)exp(ifz) — D(k,,w)exp(-ifz)] Jexp(ik, x)exp(iwr) (29)

%ﬁgfﬁ = { —kxa[A(kx,a)) exp(ioz) - Bk, m) exp(—iaz)]+

B*[C(k,,w)exp(ifz) + D(k,,w)exp(~ifz)] Jexp(ik x)exp(iwr) (30)

M2 b 2l ack wyexplian) + Bk, .o)exp(—iaz)]

%
B, [C(k,.0)exp(ifz) - D(k, @) exp(-ifi)] Jexp(k,Dexplar),  (31)

and
PCED - { kel )exptc) - Bk, 0)erpl-ico)-

k2[Clk,.0)exp(f2) + Dk, w)exp(-if)] Jexplik,expiar). (32



3. SINGLE PATE WITH NO FLUID LOAD

The first transfer function derived is a sigle plate with no fluid load. The structural load
consists of an applied pressure at definite wavenumber and frequency at location z = b, as shown
in figure 2. The normal and tangential stresses in the system at the boundaries are

o (bt = (a2 HaBD L W DD (33)
& ox
ru'(x,b,t)w[a“xs;z’b”) +‘9“Z§i’b”)]=o, (34)
7 (x,a,t) = (A+24) 8”2(;’“”) +/1‘9”x(;“’t) =0‘, (35)
and
Tu(x,a,t)zu{au"(;z’a’t)+auz(;;a’t):l=0, (36)

where p¢(x,b,t) is the structural load applied at z = b. This load is modeled as a function at
definite wavenumber and frequency as

D, (x,b,t) = P, exp(ik, x)expior). 37
Combining equations (29) - (37) yields the four-by-four linear system of equations
Ax=b, (38)

where the entries of equation (38) are

A =(a?A—202u- k2 Jexplich), (39)
A, = -aPA-202p- e exp(—iob) , (40)
As =(—2kx.ﬂ#)exr>(iﬁb), | | 41)
A, , = (2k,Bu)exp(-ipb), 42)
4y, = (- 2pk,a)expiad), (43)
A, , = (2uk,a)exp(-iod) 44)




Structural Load R, (k,, ) A

> AT \k //

2=b 21222222211111

z=a - Plate 1

Figure 2. Single Plate with No Fluid Load

Ay = (uB? - k2 Jexp( o), (43)
A0 = (1B? — k2 Jexp(-ifb) (46)
4y, = (0?A - 2020 - 22 Jexplica), (@7)
Ay, =(-a?A - 2020 - k2 Jexp(-ica), (48)
A5 = (- 2k, Bu)exp(ifa), (49)
As 4 = (2k, B )exp(-ifa), (50)
Ay =(=2pk o )exp(iom), (51)
Ay =2k, )exp(-icm), (52)
Ayy = (uB? - ik Jexp(ipa) (53)

Ay, = (uB? - k2 )exp(—ifa), (54)



31, = Alk,, ), (55)

Xy, = B(k,,0), | (56)
%y, = C(k,,0), (57)
x4y =D(k,,0), » (58)
b, =-F(k,,0), (59)
b2,1 - 0 N ) ‘ (60)
b;, =0, ‘ , (61)
and
by, =0. (62)

Using equations (39) - (62), the solution to the constants A, B, C, and D can be found by
x=A"b. (63)

Additionally, the transfer function between the normal displacement at location z and the
structural load can be written as

T(k,,w)= %%% = A(k,,w)iaexp(icz) — B(k,,w)iaexp(-iaz) +
C(k,,w)ik exp(ifiz) + D(k,,w)ik exp(-ifz), : (64)

or the normal stress and the structural load

_T.(zk,)

Tk, 0) =502 = Ak, 0)(- 0?4 — 20> - Ak2 Jexplicz) +

B(k,,0)(-a*A - 20 — Ak? Jexp(—icz) +

C(k,,0)(-2k, Bu)exp(ifz) + D(k,, w)(2k, Bu) exp(-ifiz). (65)

The transfer function in equation (64) can be compared to another transfer function
derived using the thin plate theory to ensure that it is accurate. The thin plate equation of motion
1s




4 2
59 L;(dx,z)wha Ls.t(zx,f) —p), (66)

where B is the bending stress expressed as

ER®

B=—rr,
12(1-v%)

(67)

- and h is the thickness of the plate (m) and corresponds to b-a in figure 2. The transfer function
between transverse displacement and applied force for the thin plate is

T~ e ) <68>
The flexural wavenumber of this system is at
oha? 1/4
LR "

where k f has units of rad/m. At this wavenumber, the response of the system will be extremely
large compared to its response at other wavenumbers.

Figure 3 is a plot of displacement in the z-direction (normal) divided by normal pressure
versus wavenumber in the x-direction at a forcing frequency of 500 Hz evaluated at z = b. The
solid line represents the thick plate theory (equation (64)) and the x’s represent the thin plate
theory (equation (68)). The flexural wavenumber calculated from equation (69) is denoted on the
plot. In this example, the thickness of the plate is very small (2 = 0.01 m) so that a direct
comparison between the thick and thin plate theories can be made. Other parameters used to
formulate this model are: bottom of the plate () is -0.01 m, top of the plate (b) is 0 m, Young’s

modulus (E) is 13.2¢9 (1+0.03i) N/m?, Poisson’s ratio (v) is 0.30, and density (p) is 1938
kg/m>. Only positive values of wavenumber are shown, as the function is symmetric about k =

0. Note that there is almost complete agreement between the thin and thick plate theories for this
specific example. Figure 4 is a plot of displacement in the z-direction (normal) divided by
normal pressure versus wavenumber in the x-direction at a forcing frequency of 500 Hz and a
plate thickness of 2 = 0.1 m evaluated at z = b. The two models begin to diverge as the
wavenumber increases. This is due to the inclusion of the rotary inertia terms in the thick plate
model that are not included in the thin plate model. Figure 5 is a plot of the wavenumber-
frequency (kw) surface of the system using the thick plate equations of motion (equation (64))
and the parameters that were used to formulate figure 4. The color scale to the right of the plot is
in decibels.
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(Equations (64) and (68)) at 500 Hz with h = 0.01 m

11




Thick Plate Theory
X X Thin Plate Theory
__-200
m
k=
[0}
o]
2
=
g XX e
= 250 Xx
Theoretical Flexural
Plate Wavenumber
-300 L L
0 20 40 60 80 100
Wavenumber (rad/m)
200 ! T T T
M IHIIIOIEIIIIOEIIEI I NN I IHIHIHIE xxxl

150

100
I
3
5 50
(0]
°
) Oxeeeel
o
<
o -50
172
[
Ko
& .100

Thick Plate Theory
-150 X X Thin Plate Theory |-~
_200 1 1 | |
0 20 40 60 80 100
Wavenumber (rad/m)

12

Figure 4. Transfer Function of a Single Plate with No Fluid Load
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4. SINGLE PLATE WITH A FLUID LOAD

The second transfer function derived is a single plate with a fluid load on one side. The
applied load is modeled as an incident pressure wave in the fluid at definite wavenumber and
frequency at location z = b, as shown in figure 6. The normal and tangential stresses in the
system at the boundaries are

T, (ebyt) = (A4 2p) e BDD) +/1‘7“x(x’b D p (xbit), (70)
oz ox
r (bt = u[a“{;””h ‘3’”23”’”}0, (71)
T, (x,a,0)=(A+2p) ‘9“2(;1’“”)”3”"(;“”) =0, (72)
and
T (xat)= u{au"gz’a’t) + &Z(;a,t)] =0, (73)

where pg(x,b,t) represents the (acoustic) pressure of the fluid load on the plate and includes the
applied load. '

The acoustic pressure in the outer fluid is governed by the wave equation and is written in
Cartesian coordinates (reference 4) as

3%p,(x,2,t) N 82pa(x,z,t) _iazpa(x,z,t)
322 8x2 C;’- (9[2

=0, (74)

where p,(x,z,t) is the pressure (N/m?), z is the spatial location (m) normal to the plate, and ¢ f

is the compressional wavespeed of the fluid (m/s). The acoustic pressure is modeled as a
function at definite wavenumber and frequency as

P.(x,2,t) = P, (z,k,,w)exp(ik,x)exp(ior) . (75)
Inserting equation (75) into (74) and solving the resulting ordinary differential equation yields
£ (2,k,,0) = G(k,,0)exp(iyz) + Py (k,,w)exp(-iy), (76)

where the first term on the right-hand side represents the reradiated pressure field and the second
term represents the applied incident pressure field (the forcing function) acting on the structure.
In equation (76),

15
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Figure 6. Single Plate with Fluid Load

7

where yis purely real or imaginary, dependmo on the sign of the argument. When the sign of the
argument is positive, the analysis is in the acoustic cone; when the sign of the argument is
negative, the analysis is in the nonacoustic region. The interface between the fluid and solid
surface of the plate satisfies the linear momentum equation (reference 5), which is

9%u_(x,b,t) _ dp,(x,b,1)

P =T (78)

where p f is the density of the fluid (kg/m?).

Combining equations (70) - (78) yields the four-by-four linear system of equations

16



Ax=b, | (79)

where the entries of equation (79) are

2
Ay =[—a2/1—2a2y—,1k3 +p—f;33]exp(iab), | (80)
[ 2 2 2 pfwza] : i |
A, =|-a"A-20"u—-Ak; - ” |lexp(-iob), (81)
P00k, _ o
A =| =2k fus = lexplifh), (82)
p,.0%k
A1,4 = [kaﬁ.u + L y - ]37(13(_1&7) » ) (83) v
Ay, = (~2uk a)exp(iob), (84)
Ay » = (2uk, or)exp(-iab), (85)
Ayy = (uB? ~ 1k Jexp(ifb), (86)
Ay = (,uﬁ 2~k )eXP(—iBb) : (87)
Ay, = aPh 202 - A2 Jexplica), (88)
A, = (0?2070 - A2 )exp(-ica), O (89)
Ay s = (- 2k, Bu)exp(ifa), | (90)
A, 4 = (2k, Bu)exp(-ifa), | 1)
Ay = (- 2uk a)expioa), (92)
A, = (2uk.a)exp(-ioa), (93)

Ags = (/-‘B 2 — ik )exp(iﬂa) , (94)




Ay = (1uB? ~ uk2 Jexp(-ifa) (95)

x; = Alk,, ), | (96)
X1 = Blk,,0), o7
X3, = Clk,, ), (98)
x4, = D(k,,m), : (99)
by =-2P, (k,,w)exp(-iyb), (100)
b,, =0, | (101)
b, =0, (102)
and
by, =0. (103)

Using equations (80) - (103), the solution to the constants A, B, C, and D can be found by
x=A"b. (104)

Additionally, the transfer function between the normal displacement at location z and the
acoustic load can be written as

Tk, 0)=— (]:J((DZ) :;;(l)-—)iyb) = Ak, w)iaexp(ioz) — B(k, )i exp(-iaz) +
C(k,,w)ik, exp(ifz) + D(k,,w)ik, exp(-ifz) (105)

or the normal stress and the structural load

T. (z,k,,0) _ SUTVRNPS .
P, (k..,0) exp(—ib) Ak, 0)(- a*2 — 201 — Ak Jexplioz) +

B(k,,0)(- a*A - 20 - Ak? Jexp(-iaz) +

C(k,,w)(=2k, Bu)exp(ifz) + D(k,,w)(2k, fu) exp(if).

Tk, w)=

(106)

The transfer function in equation (105) can be compared to another transfer function
derived using the thin plate theory to ensure that it is accurate. This transfer function is derived
by equating equation (66) to equation (76) and applying equation (78), which yields
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U,k o) -2

T(k,,w)= — = oS- (107)
PI (kx’w)exp(—lyb) A4 2 pfa)
Bk, — pho* +——
1y
The flexural wavenumber of the fluid loaded plate system is at
) 1/4 .
ke =k 1+—L-| . 108
f f[ * ok, ] (108)

where k f has units of rad/m and & f is determined using equation (69). At this wavenumber, the
response of the system will be extremely large compared to its response at other wavenumbers.

_ Figure 7 is a plot of displacement in the z-direction (normal) divided by normal pressure
versus wavenumber in the x-direction at a forcing frequency of 500 Hz evaluated at z = b. The
solid line represents the thick plate theory with a fluid load (equation (105)) and the x’s represent

the thin plate theory with a fluid load (equation (107)). The fluid-loaded flexural wavenumber
calculated from equation (108) is denoted on the plot. In this example, the thickness of the plate
is very small (2 = 0.01 m) so that a direct comparison between the thick and thin plate theories
can be made. Other parameters used to formulate this model are: bottom of the plate (a) is -0.01

m, top of the plate (b) is 0 m, Young’s modulus (E) is 13.2e9 (1+0.03i) N/m?, Poisson’s ratio
(v) is 0.30, density of the plate (p) is 1938 kg/m?, compressional wavespeed of the fluid (¢ f) is

1500 m/s, and density of the fluid (p f) is 1025 kg/m>. Only positive values of wavenumber are

shown, as the function is symmetric about k = 0. Note that there is almost complete agreement
between the thin and thick plate theories for this specific example. Figure 8 is a plot of
displacement in the z-direction (normal) divided by normal pressure versus wavenumber in the x-
direction at a forcing frequency of 500 Hz and a plate thickness of # = 0.1 m evaluated at z = b.
The two models begin to diverge as wavenumber increases. This is due to the inclusion of the
rotary inertia terms in the thick plate model which are not included in the thin plate model.
Figure 9 is a plot of the wavenumber-frequency (kw) surface of the system using the thick plate
equations of motion (equation (105)) and the parameters that were used to formulate figure 7.
The color scale to the right of the plot is in decibels. ‘
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Figure 7. Transfer Function of a Single Plate with Fluid Load
(Equations (105) and (107)) at 500 Hz with h = 0.0 m
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Figure 9. Transfer Surface of a Single Plate with Fluid Load
(Equation (105)) with h=0.1 m




5. DOUBLE PLATE WITH NO FLUID LOAD

The third transfer function derived is a double plate with no fluid load. The structural
load consists of an applied pressure at definite wavenumber and frequency at location z = ¢, as
shown in figure 10. The normal and tangential stresses in the system at the boundary z = ¢ are

T (o) =(h, +2u,) 20D ) Fa(eh) —p,(x,c.1), (109)
_ p2 p®
and v
Tu(x,c,t)=u2{au"(&x’c’t)+ auzg;c’t)}:o, (110)

where the subscript 2 denotes plate 2. The 1nterface between plates 2 and 1 requires four
equations. The first two are displacement constraints, which are

U (5,0 L, =, (5D t)lplatel ; (111)
and .

ux(x’b’t)lplatez u (x b t)lplatel : (112)
The second two are stress constraints, which are

T, (x,zb,z)|plate , =Ty (x,b,t)|platel , . ' (113)
and

Tu(x’b’t)lplateZ =Tu (x’b’t)lplatel : (114) .
Finally, the normal and tangential stresses in the system at the boundary z = a are

t
r(ran) =y +2u) 2eBBD L HEaD o (115)
E: o
and
[uy (x,a,t) Juy(x,at)]
Ty (x,a,t) = + =0, 116

where the subscript 1 denotes plate 1.
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z=b Plate 2
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Figure 10. Double Plate with No Fluid Load

Combining equations (109) - (116) yields the eight-by-eight linear system of equations
Ax=b, : (117)

where the entries of equation (117) are

Ay = (028, ~ 202, - Ak explicryc)., (118)
Ay, = (024, - 2021, — A, k2 Jexp(-ioye). (119)
A5 = (= 2k By, Jexp(iB,e) (120)
Ay = (kaﬁzﬂz )eXp(——iﬁzc) ) 121
A5=0, (122)
A =0, (123)
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Ag =0,

Ay = (= 21,k,01, Jexp(iac)
Ay 5 = (2psk, ) Jexp(-iaye),
Ay = (:”2522 L )eip(iﬁzC) ,
Ay = (“2322 — ok} )CXP(—iﬁzc) ,

A2’5 = O,

Ayg =0,
Ay =(ia,)expliayb),
A, =(-ia, Jexp(-iayb),
A5 = (ik, Jexp(iB,b) ,
A3,4 = (ikx )exp(_iﬁ2b) B
Ay s = (-iey Jexp(ioyb) ,
As s =(i0y Jexp(-iayh),
Ayq = (-ik, )expGp,b),
Ay g = (~ik, Jexp(-ifb),

| Ay = (ikx )eXP(iazb) ,

(124)

(125)
(126)
(127)

(128)

(129)

(130)
(131)
(132)
(133)
(134)

(135)

- (136)

137
(138)
(139)
(140)
(141

(142)
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A, = (ik, Jexp(-ia,b),
Ay3 = (-1B, Jexp(Byb),
Ay4 = (1B, )exp(=iB,b).,
A,s = (-ik, )explioyb),
Ay = (-ik, Jexp(-iayb),
447 = (B, JexpGiBb),
Ayg = (1B, Jexp(-ifib),

As) = (‘ ik, =200 u, - Ak} )CXP(i ayb),

As,y =020, — 2020, — Ak2 Jexp(-iayb),

Asy = (_ 2k, Byu, )eXp(i,sz) ,
As , = 2k, By, Jexp(-ifyh)

2, + 202, + 2k JexpGiayb),

Ass
Asg =(o24, +207 , + k2 Jexp(-iayb)
Asq = 2k, By )exp(Bib),

Asg = (= 2k By Jexp(-ifib) ,

Agy = (= 2k, 00, Jexplias,b),

A2 = 215k, Jexp(-ia,b),

Ag5 = (1,82 — 1,k JexpB,h),

Ag o = (1,82 — 1,k Jexp(=iBy),

Ags = (21u1kxa1 )eXP(i a,b),

(143)
(144)
(145)
(146)
(147)
(148)
(149)
(150)
(151)
(152)
(153)
(154)
(155)
(156)
(157)
(158)
(159)
(160)
(161)

(162)



As 5 = (= 2mk,0n Jexp(-iayb),

Agy = 1 B? + w2 JexpGBp)

Ags = (- 187 + w2 )exp(-iBp)

A, =0,
A, =0, _
A7’3 =O,

A74=0,

Ang = a?h =202 - Ak exp(—ieya),

A= (“ 2k, By )exP(iﬁla) ,

Agg = (kaﬁlﬂl )CXP(—iﬁﬂ) >

A, =0,

| Ags=(- 2u1kxal)ex§(ia1a) ,'
Ay 6 = (2mk, 04 Jexp(-ioa),
Agq = (Hlﬁlz - ks )eXP(iﬂlq) ;

Ao =1 B2 - w2 Jexp(-iBia) .,

(163)

(164)

(165)

(166)

A (167)

(168)

(169)

(170)

(171)

(172)

(173)

(174)

(175)

(176)

(177)

(178)

(179)

(180)

(181)
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X, =4, (k,,0), (182)

Xy, = By(k,, @), (183)
X1 = Cylk,, @), (184)
X4y = D, (ky,0), (185)
xs1 = Ak, 0), (186)
X1 = By (k,, ), (187)
X741 = C(k,,0), (188)
xg1 = Dy (k,, 0), (189)
b, =-P(k,,0), (190)
b,; =0, (191)
by, =0, , ' (192)
by, =0, (193)
bs; =0, (194)
bs; =0, (195)
b,; =0, (196)
and
by, =0. (197)

Using equations (118) - (197), the solution to the constants A, B;, C;, D,, A,, B,, C,,and D,
can be found by .

x=A"b. (198)

Additionally, the transfer function between the normal displacement at location z (when z < b)
and the structural load can be written as
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U, (2.k,,0)

T(k,,0) = PR A (k. w)icy exp(icyz) - By (k,, w)ioy exp(~ic,2) +
C,(k,,w)ik exp(iB,z) + D, (k,,w)ik, exp(~if,z), (199)
or (when z > b)
k
T(k,,w)= U. @k, 0) = A, (k,,w)ia, exp(ict,z) = B, (k,,w)ia, exp(—ie,z) +
P (k,,0) - i
C, (k,,w)ik, exp(if,z) + D, (k,,w)ik, exp(-if,z). (200)

The transfer function between the normal stress at location z (when z < b) and the structural load
can be written as :

T, (z,k,,0) .
Tlkw) =522~ Ak, o)~ 02 d, — 2020, - A k2 Jexplioy2) +

B, (k,,0)(~ a2, — 202 u, - A,k Jexp(—io, ) +

C, (k,,0)(=2k, B,,) exp(iB, 2) + D, (k,,,0)(2k, By 1, ) exp(-iB,2), (201)

or (when z > b)

_T.(zk,0

Tk, 0) =52 w)) = A, (k,,0)(- a4, - 2021, — L,k Jexplia,2) +

B, (k,, )~ 22, - 2024, — A,k? Jexp(—ict,2) +
C, (k,,0)(=2k B, 1,)exp(iB,2) + D, (k,,0)(2k, B, u,)exp(-iB,2).  (202)

Figure 11 is a plot of displacement in the z-direction (normal) divided by normal pressure
versus wavenumber in the x-direction at a forcing frequency of 500 Hz evaluated at z = ¢. In this
example, the sum of the thickness of the two plates is very small (2 = 0.01 m). The solid line
represents the thick plate theory using two plates (equation (200)) and the x’s represent the thin
plate theory (equation (68)) using # = 0.01 m. Additionally, the material properties of the two
(thick) plates are identical so that a direct comparison between the thick and thin plate theories
can be made using only a single thin plate. Parameters used to formulate this model are: bottom
of plate 1 (a) is -0.010 m, intersection of plates 2 and 1 (b) is -0.005 m, top of plate 2 (c) is O m,
Young’s modulus (E) is 13.2¢9 (1+0.03i) N/m?, Poisson’s ratio (v) is 0.30, and density of the
plate (0) is 1938 kg/m’. Only positive values of wavenumber are shown, as the function is
symmetric about k = 0. Note that there is almost complete agreement between the thick plate
theory using two similar thick plates and the thin plate theory using one plate for this specific
example. Figure 12 is a plot of displacement in the z-direction (normal) divided by normal
pressure versus wavenumber in the x-direction at a forcing frequency of 500 Hz evaluated at z =
c. In this example, the sum of the thickness of the two plates is very small (4 = 0.015 m). The
solid line represents the thick plate theory using two plates (equation (200)) and the Xx’s represent
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the thin plate theory (equation (68)) using # = 0.005 m. Additionally, the material properties of
the two (thick) plates are extremely dissimilar so that a direct comparison between the thick and
thin plate theories can be made using only a single thin plate with the thickness of the stiff thick
plate (2 = 0.005 m). Parameters used to formulate this model are: bottom of plate 1 (a)is -0.015
m, intersection of plates 2 and 1 (b) is -0.005 m, top of plate 2 (c) is 0 m, Young’s modulus of

plate 1(E,) is 13.2e9 (1+0.03i) N/m?, Young’s modulus of plate 2 (E, ) is 13.2e4 N/m?,

Poisson’s ratio of plates 1 and 2 (v) is 0.30, and density of plates 1 and 2 (p)is 1938 kg/m>.

Only positive values of wavenumber are shown, as the function is symmetric about £ = 0. Note
that there is almost complete agreement between the thick plate theory using two dissimilar thick
plates and the thin plate theory using one plate (matched to the stiff plate parameters) for this

specific example. Figure 13 is a plot of the wavenumber-frequency (k) surface of the system
using the thick plate equations of motion (equation (200)) evaluated at z = c. The first plate is a
stiff material and the parameters of this plate are: bottom of the plate (a) is -0.06 m, top of the

plate (b) is -0.05 m, Young’s modulus of the plate (E,) is 4.55e10 (1+0.03i) N/m?, Poisson’s
ratio of the plate (v;) is 0.30, and density of the plate ( p,) is 7700 kg/m>. The second plate is a
soft material and the parameters of this plate are: bottom of the plate (b) is -0.05 m, top of the
plate (¢) is 0 m, Young’s modulus of the plate (E, ) is 1e9(1+0.15i) N/m?, Poisson’s ratio of the

plate (v,) is 0.45, and density of the plate (p, ) is 1200 kg/m®. The color scale to the right of

the plot is in decibels. All values greater than -190 dB are displayed as -190 dB and all values
less than -220 dB are displayed as -220 dB.
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(Equation (200)) Using Similar Material Properties at 500 Hz
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Figure 12. Transfer Function of a Double Plate with No Fluid Load
(Equation (200)) Using Dissimilar Material Properties at 500 Hz
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6. DOUBLE PLATE WITH A FLUID LOAD

The fourth transfer function derived is a double plate with a fluid load. The applied load
is modeled as an incident pressure wave in the fluid at definite wavenumber and frequency at
location z = c, as shown in figure 14. The normal and tangential stresses in the system at the
boundary z = ¢ are '

T (o) =iy +2py) 22 BCD  HBCD) )y (203)
oz ox
and
Tu(x’c,t)zﬂzl:a?x(az-x’C,t)_*_auzi:);c,t):I:O, (204)

where the subscript 2 denotes plate 2. The interface between plates 2 and 1 requires four
equations. The first two are displacement constraints, which are

ZHER) IR TR CH R) I (205)
and

UNERR) IR TN N X) N (206)
The second two are stress constraints, which are

EXR) L e R) I (207)
and

NCR) BNV SN ENN) NN (208)
Finally, the normal and tangential stresses in the system at the boundary z = g are

t(5,0,0) = O + 2u) 2@, MEDD ‘ (209)

0z ox ,
and
ou (x,a,t) ou,(x,a,t)
7, (x,a,t) = =3 +—= =~ 1=0, 210

where the subscript 1 denotes plate 1.
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Figure 14. Double Plate with Fluid Load

Combining equations (75) - (78) and (203) - (210) yield the eight-by-eight linear system
of equations

Ax=b, (211)

where the entries of equation (211) are

2
. w o
Ay = [ —aid, =202, — A,k? +p—f——2jexp(ia20) , (212)
14
2 2 2 pfa)zaz ‘
A, =|—aid, - 20, - Ak - exp(-ic,c), (213)
2
pfw kx .
A= {— 2k, Bou, + . ]exp(lﬁzc) , (214)
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2

po%,)
A, =[2kx,321u2 + fy ]exp(—lﬁzc),

A5 =0,

As=0,

A, =0,

fhs =0,

Ay = (- 2pk,05 Jexpliae) ,
Ay p = 21k, )exp(—icne),
Az = (ﬂzﬂ ? - uk? )eXp(iﬂzc) ,
Ay = (}‘2ﬁ 2 — Wk )CXP("iﬁzc) ,
A5 =0,

Az,s =0,

A7 =0,

Ay =0,.

Ay = (iaz )CXP(iazb) )

A, = (-ia, Jexp(-ia,b),

Ay 3 = (ik, Jexp(iB,b) ,

= i JoxpC-iBi),

Ass = (-ioy Jexp(iond),

Ayg = (i o )eXP("‘i a,b),

(215)

(216)

(217)

(218)

(219)

(220)

(221)

(222)

(223)

(224)

(225)

(226)

(227)

(228)

(229)
(230)
(231)
(232)

(233)
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Ay, = (-ik, )exp(iBib),

Asg = (-ik, )exp(=iB,b),

Ay = (ik, Jexplia,b)

Ay =ik, Jexp(-ioyb),
Ays = (1B, )exp(iByb).,
Ay s = (B, )exp(-ifih),

A5 = (-ik, Jexpiab) ,

Ay = (-ik, Jexp(-iayb),

Ay = (iﬁl )exp(iﬁlb) ,

Az = (~1B)exp(-iBb),

Agy =020, - 2021, - Ak Jexplionb)
A5 = (‘ 023, — 202 1y ~ 2,k Jexp(-iab)
As3 = (= 2k, B, 1, Jexp(iByh),

Asy = (2kxﬁzﬂz )exP(_iﬁzb) )

Ass
As

As g

Asg = (= 2k, B, Jexp(=iBib) ,

Agy = (‘ 2pak 0 )exp(i a,b),

= ( PN+ 200y + Ak )exp(ialb) ,
(a,zil +208 py + Aok )exp(—i oyb) ,

(2k, By, Jexp(Bib),

(234)
(235)
(236)
(237)
(238)
(239)
(240)
(241)
(242)
(243)
(244)
(245)
(246)
(247)
(248)
(249)
(250)
(251)

(252)



Ag, = (2/,L2kxa2)exp(—ia2b) ,
Ags = (0,82 ~ k2 Jexp(iB,h),
Aq =1 B2 — k2 Jexp(=iB,b)
As s = (2mk, o Jexpliasp),

As s = (- 2k, )exp(=iasb),
Agy = (- B + k2 JexpGiBid)
Ags = (B2 + k2 Jexp(-iBB),
A, =0, '
A, =0,

A;3=0,

Ay, =0,

Ans = (co2a — 203~ A2 Jexplioya),

Ajg = (‘ o !2% - 205?'#1 - &kf )CXP(—iOfla) ,

Ay 7 = (= 2k, B, Jexp(if,a),

Agg = (2k, By Jexp(=ifya) ,

‘ A8,4=0’

Ags = (" 2k, o )exp(iocla) ,

(253)

(254)

(255)

(256)

(257)

(258)

(259)

(260)

(261)

(262)

(263)

(264)

(265)

(266)

(267)

(268)
(269)
(270)
@271)

(272)
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and

40

Ay 6 = (2mk,0n Jexp(-iya),
a7 = (B? - k2 Jexp(iBa),
Agg = (B2 ~ w2 Jexp(-iBa),
X1 = Ay (ks ),

Xy1 = By(k,,00),

%31 = Cy(k,,0),

x4y =D, (k,,0),

x5, = Ak,,0),

X6y = Bi(k,,0),
x7,=C(k,,0),

xg1 =Dy (k,,m),

by =-2P (k,,w)exp(-iyc),

273)
(274)
(275)
(276)
277)
(278)
(279)
(280)
(281)
(282)
(283)
(284)
(285)
(286)
(287)
(288)
(289)
(290)

(291)



Using equations (212) - (291), the solution to the constants A, B,, C,, D;, A,, B,, C,,and D, '
can be found by

x=A"b. (292)

Additionally, the transfer function between the normal displacement at location z (when z < b)
and the structural load can be written as

U,(z,k,,m)
P, (k,,w)exp(-iyc)

Tk, w)= = A (k,,w)ic, exp(ic, z) -

B, (k,,w)ix, exp(-ia,z) +

C (k,,w)ik, exp(iﬂlz) + D, (k,,w)ik  exp(-if,z), (293)
or (when > b)

U,(zk,,0)

= = k : 7 . _
P, (k. ,w)exp(-iyc) A, (k. ,0)ia, exp(ia, z)

T(k,,0)

B, (k,,w)ia, exp(—io,z) +

C, (k,,0)ik_ exp(f,z) + D, (k,, )ik, exp(-iB,z). » (294)

The transfer function between the normal stress at location z (when z < b) and the structural load
can be written as

U.(z,k,,0)

T ®) =2 %, 0)explire)

=A,(k,,w)ic, exp(ic,z) -

B,(k,,w)ia, exp(-ia,z) + -
C,(k,,w)ik, exp(ip,z) + D, (k,w)ik, exp(—if3,z). (295)
or (when z > b)

T, (z.k,,w)

B = 4, (k,,0)(-02A, 203 1, — A,k? Jexp(i
P, (k,w)exp(-irc) Ak, 0)- 032, =205, = k2 Jexplion,2) +

Tk, o)

B,(k,, a))(— 03 A, =202 U, — A k2 )exp(—iazz) +
C?. (kx ? w)(_zkx ﬁZAuZ ) exp(iﬁz Z) + D?. (kx ’w)(zkaZ#Z ) exp(_iﬁzz)- (296)
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Figure 15 is a plot of the displacement in the z-direction (normal) divided by normal
pressure versus wavenumber in the x-direction at a forcing frequency of 500 Hz evaluated at z =
¢. In this example, the sum of the thickness of the two plates is very small (4 = 0.01 m). The
solid line represents the thick plate theory using two plates (equation (294)) and the x’s represent
the thin plate theory (equation (107)) using & = 0.01 m. Additionally, the material properties of
the two (thick) plates are identical so that a direct comparison between the thick and thin plate
theories can be made using only a single thin plate. Parameters used to formulate this model are:
bottom of plate 1 (a) is -0.010 m, intersection of plates 2 and 1 (b) is -0.005 m, top of plate 2 (¢)
is 0 m, Young’s modulus (E) is 13.2e9 (1+0.03i) N/m?, Poisson’s ratio (v) is 0.30, and density
of the plate (p) is 1938 kg/m>. Only positive values of wavenumber are shown, as the function
is symmetric about k = 0. Note that there is almost complete agreement between the thick plate
theory using two similar thick plates and the thin plate theory using one plate for this specific
example. Figure 16 is a plot of the displacement in the z-direction (normal) divided by normal
pressure versus wavenumber in the x-direction at a forcing frequency of 500 Hz evaluated at 7 =
c. In this example, the sum of the thickness of the two plates is very small (7 = 0.015 m). The
solid line represents the thick plate theory using two plates (equation (294)) and the x’s represent
the thin plate theory (equation (107)) using k= 0.005 m. Additionally, the material properties of
the two (thick) plates are extremely dissimilar so that a direct comparison between the thick and
thin plate theories can be made using only a single thin plate with the thickness of the stiff thick
plate (£ = 0.005 m). Parameters used to formulate this model are: bottom of plate 1 (a) is -0.015
m, intersection of plates 2 and 1 (b) is -0.005 m, top of plate 2 (¢) is 0 m, Young’s modulus of

plate 2 (E, ) is 13.2e9 (1+0.03i) N/m?, Young’s modulus of plate 1 (E,) is 13.2e4 N/m?,

- Poisson’s ratio of plates 1 and 2 (v) is 0.30, and density of plates 1 and 2 (p) is 1938 kg/m®.

Only positive values of wavenumber are shown, as the function is symmetric about k = 0. Note
that there is almost complete agreement between the thick plate theory using two dissimilar thick
plates and the thin plate theory using one plate (matched to the stiff plate parameters) for this
specific example. Figure 17 is a plot of the wavenumber-frequency (kw) surface of the system
using the thick plate equations of motion (equation (294)) evaluated at z = c. The first plate is a
stiff material and the parameters of this plate are: bottom of the plate (a) is -0.06 m, top of the

plate (b) is -0.05 m, Young’s modulus of the plate (E, ) is 4.55¢10 (1+0.03i) N/m?, Poisson’s
ratio of the plate (v, ) is 0.30, and density of the plate () is 7700 kg/m>. The second plate is a
soft material and the parameters of this plate are: bottom of the plate (b) is -0.05 m, top of the
plate (¢) is 0 m, Young’s modulus of the plate (E,) is 1€9 (1+0.15i) N/m?, Poisson’s ratio of the

plate (v, ) is 0.45, and density of the plate (p,) is 1200 kg/m>. The color scale to the right of

the plot is in decibels. All values greater than -190 dB are displayed as -190 dB and all values
less than -220 dB are displayed as -220 dB.
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Figure 16. Transfer Function of a Double Plate with Fluid Load
(Equation (294)) Using Dissimilar Material Properties at 500 Hz
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7. TRIPLE PLATE WITH NO FLUID LOAD

The fifth transfer function derived is a triple plate with no fluid load. The structural load
consists of an applied pressure at definite wavenumber and frequency at location z = d, as shown
in figure 18. The normal and tangential stresses in the system at the boundary z = d are

auz-(;cz,d,t) .

du,(x,d,1) B

T, (x,d,t) = (A +2u,) Ay > -p,(x,d,t), (297)

and

(298)

1u(x,d,t)=u3{a”"(;z’d’t)+ 8uz(;c);d,t):l=0’

where the subscript 3 denotes plate 3. The interface between plates 3 and 2 requires four
equations. The first two are displacement constraints, which are

u,(x,c, z‘)]Plate s = (x, C’t)lplate , (299)

and
ux ('xa C, t)l

=u.(x,c,t) (300)

plate3 plate2 *

The second two are stress constraints, which are

T (00| =T (xc1) (301)

plate3 plate2 ’

and

T,.(xc, t)IpIm , =T (x,0,0) (302)

plate2 °

The interface between plates 2 and 1 requires four equations. The first two are displacement
constraints, which are

u, (x,b,zr)|plate , =1, (x,b,t)lpme L (303)
and

u, (x,b,t)lplate , Sy (x,b,t)!platel . (304)
The second two are stress constraints, which are

Tz (x.b, t)lplateZ =Tz (x.b, 2‘)IIJIatel ’ (305)

and
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A T [~

Z=cC Plate 3
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z=b Plate 2 /
\

o zZ=a / Plate 1

Figure 18. Triple Plate with No Fluid Load

T b0 ey = To(BBD| L - (306)
Finally, the normal and tangential stresses in the system at the boundary z = a are
T (nat) =y +2u) 2D 5 HM(xat) o (307)
= oz ox
and
T han =, ou, (x,a,t) N du (x, a,t):’ 0, (308)
Jz ox

where the subscript 1 denotes plate 1.
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Combining equations (297) - (308) yields the twelve-by-twelve linear system of equations
Ax=b, | (309)

where the entries of equation (309) are

4y, =024 2020, - A2 Jexpliond), (310)
A, = (- 02A; — 2021, - A2 Jexp(—ieyd), (311)
As =(=2k Bsu; Jexpifsd), (312)
Ay = (2k, Bsts Jexp(-iBsd) , (313)
As=0, (314)
A, =0, | (315)
Ay =0, | (316)
Ag =0, : (317)
A, =0, (318)
Ao =0, (319)
A, =0, (320)
Ay, =0, | (321)
Ay = (= 2p5k,0 )expliond), (322)
4, 5 = 2psk, 05 )exp(-iasd) (323)
Ay s = (1452 — sk Jexp(iBsd) | | (324)
Ay 4 = (1,82 = k2 Jexp(-iBsd) | (325)

Ay5=0, (326)
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Ay =0,

Ay = (ioz3 )exp(i 0l5C)
Ay, =(-ioy Jexp(-iase),
A3 = (ikx)expﬁﬁ3c) )
Ay 4 = (ik, Jexp(-iBsc),
Ass = (-ia, Jexpio,e),
A = (ia, Jexp(=ia,c),
A; 7 = (-ik, Jexp(p,c) ,
As g = (=ik, Jexp(-if,e),
Ay =0,

As 1 =0,

Asp; =0,

A5y, =0,

Ay, =ik, Jexpliase),

(327)

(328)

(329)

(330)

(331)

(332)

(333)

(334)

(335)

(336)

(337)

(338)

(339)

(340)

(341)

(342)

(343)

(344)

(345)

(346)



A, = (ik, Jexp(<iagc),
Ay3=(-1B; Jexp(Bse)
Ay = (iB5)exp(=iBsc),
A5 =ik, Jexp(ione),
A =ik, Jexp(-iane),
Ayz = (iB;)exp(iBse)

Aug =(-iB,)exp(-iByc),

A5y = (— 053233 - 20632,u3 - ijf )exp(ia3c) ,

Ay = (- 02, - 202, — 25K 2 exp(-iar0)

Agy = (= 2K, Boyts Jexp(Bsc),

A5, = (kaﬁ3.“3 Jexp(=iBsc)

]

AS,;- (asz +202 uy + Aok )exp(ioczc) ,
Asg (af/lz +202 U, + Aok )exp(—iazc) ,
As7 = 2k, Botty )exp(iB,c),

Asg = (= 2k, B, 1, Jexp(—iP,c)

A5,9=0’

(347)

(348)

(349)

(350)

(351)

(352)

(353)

(354)

(355)

(356)

(357)

(358)

(359)

(360)

| (361)

(362)

(363)

(364)

(365)

(366)
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AS,IZ =0,

As; = (= 2u3k,05 )expliase),
Agay = (2,u3kx063 Jexp(—i 05C),
Ags = (B2 - k2 JexpliBsc),
Agq = (f‘sﬁsz ~ psk; )CXP(“iﬁgc) :
Ass = (2urk, 0, Jexpliaryc) ,

Ag s = (= 21k, 00 Jexp(=iac),

Ay = 11,82 + k2 exp(iBsc),

Aﬁ,g = (— 1o B2 + pok )exp(——iﬁzc) ,

Aq s =(io, Jexponb),

(367)
(368)
(369)
(370)
(371)
(372)

(373)
(374)
(375)
(376)
(377)
(378)
(379)
(380)
(381)
(382)
(383)
(384)
(385)

(386)



A ¢ = (-ia, Jexp(-iayh),

Ay7 = (ik, Jexp(iB,b) ,
Ay = ik, Jexp(-iB0),

Ao = (-ioy Jexpliogh),

A 10 = (o Jexp(<igyb),

A= (‘ ik, )exp(iﬁlb) ,

Arp = (‘“ ik, )eXP(‘iﬁlb) )

Ags = (ik, Jexp(iayh),

Ag 6 = (ik, Jexp(-ioyb),
Ag7 = (1B, )exp(B,b),
Ay = (1B, Jexp(-iByb),

Ago = (-ik, Jexplioyd),

Agy0 = (-ik, Jexp(-ioyb),

Ag11 = (B, )expBd),

Agpp=(- iBl Jexp(-iByb),

A9,1 =0’

(387)
(388)
(389)
(390)
(391)
(392)
(393)
(394)
(395)

(396)

(397)

(398)
(399)
(400)
(401)
(402)
(403)
(404)
(405)

(406)
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Ays = (- 022, ~202u, ~ 2ok Jexpliash)

Ay = (- 02, ~ 20, ~ 1,k2 Jexp-ich)

Ay = (= 2k, By, )exp(B,b),

Ay = (2K, Bty Jexp(-iB,b).

Ao = (02, + 2020, + 2k Jexplioy)
Ag 1o = (03 + 202, + k2 Jexp(~ioyb),
Ay = (2K, Byt Jexp(iBb).

Agyp = (_ 2k, B, )CXP(‘iBIb) ,

Aps = (- 21:k,0, Jexplia,b),
Ape = u k., Jexp(~iab),
Ay = (,“2[3 - ok} )CXP(iﬁzb) .
Ay = (flzﬁ 2- ﬂzkf )eXp(—iﬁzb) )

Ao = (2rulkxal )exp(i a,b),

(407)

(408)

(409)

(410)

411)

412)

413)

(414)

(415)

(416)

(417)

(418)

(419)

(420)

@21)

(422)

(423)

(424)

(425)

(426)



A g0 = (= 2mk, 0 Jexp(—ioyb),
Ay = (‘ wBE + wk; )GXp(iﬁlb) ,

Agy, = (“ BE + wk? )CXP(—iﬁlb) ,

A11,1 =0,

45=0,

A =0,

A7 =0,

4 1,84 =0,

Ay = (- 02h — 2020 — A2 Jexplioya),
Ao = (‘ athy — 200 p — Ak} )exp(-—iala) .
Ay = (- 2k, By Jexp(Bia),

Az = 2k, By Jexp(-ifia),

Ay, =0,

A2 =0,

A5=0,

A12,4 =0,

427)
(428)
(429)
(430)
(431)
432)
(433)
(434)
(435)
(436)
(437)
(438)
(439)
(440)
(441)
(442)
(443)
(444)

(445)

55




56

Aps=0,

Apg =0,

A7 =0,

Apg =0,

Aps = (- 2mk,0 )CXP(iala) ;
Ango = 2k, Jexp(-ioya),
Apn = (fllﬁ - wk? )exp(iﬁla) ,
Apgp = (#1B12 - Wk} )eXp(—iBIa),
X, = A5k, 0),

Xy, = Bs(k,,0),

x3, = C5(k,,0),

%ay = Dy(k,, @),

X5y = Ay (k,, @),

Xe1 = By (k,, ),

x7; = Cylk,,0),

X3y =D, (k,,0),

X, = Ay (k,,0),

%01 = By (k,, 0),

x1 =Gk, 0),

X1 = Dy (k,, 0),

(446)
(447)
(448)
(449)
(450)
(451)
(452)
(453)
454)
(455)
(456)
457
(458)
(459)
(460)
(461)
(462)
(463)
(464)

(465)



b, =-F,(k,,0), (466)

by, =0, . (467)
by, =0, ' (468)
by, =0, (469)
bs, =0, ' (470)
b5, =0, | | 471)
b,1 =0, (472)
by, =0, | (473)
by, =0, 474)
by, =0, 475)
by, =0, . (476)
and
by, =0. 477)

Using equations (310) - (477), the solution to the constants 4,, B, C,, D;, A;, B,, C,, D,,
As, B;, C;, and D, can be found by |

x=A"b. : (473)

Additionally, the transfer function between the normal displacement at location z (when z < b)
and the structural load can be written as

k., i . . .
Tk, w)= U—Izo(zzk’—iw—(;-)l = A (k,,w)ia, exp(io,z) — B, (k,,w)ic, exp(—io,z) +
CI (kx ? w)lkx exp(iﬁl Z) + Dl (kx ’w)ikx exp(_iﬁl Z)7 (479)

or (whenz>bandz<c¢)
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Tk,w)= M = A, (k,,w)ia, exp(ia,z) — B, (k,,w)ic, exp(-ix,z) +

P (k.,w)
C2 (kx 4 w)lkx exp(iﬁzz) + D?. (kx b4 w)lkx exP(—iﬂz Z)7 (480)
or (when z> ¢)
Tk, ,w)= M_w_) = A;(k,,w)ia, exp(ia,z) - B (k, ,w)ia, exp(—ia,z) +
P,(k,,)
C,(k,,w)ik, exp(iB,z) + D, (k,,w)ik, exp(-ifB,z). (481)

The transfer function between the normal stress at location z (when z < b) and the structural load
can be written as

' T.(z,k,,w) .
T(k,,0) = Sy Ak )02, - 2071, - Ak Jexplicy 2) +
B, (k,,0)(- a?A, — 202 i, — A k2 Jexp(—ic, z) +

C, (k,,0)(=2k, B, p, ) exp(iB, 2) + D, (k,,)(2k, B, ;) exp(—if, ), (482)

or (whenz>bandz<¢)

T(k,,w)= T.@k,0) A, (kx,w)(— Q3 A, =202 1, ~ Ak} )exp(ia,z) +
F (k@) ) T )

B, (k,,0)(~ 022, — 2021, — A2 Jexp(—ict,2) +

C,(k,,0)(=2k, B,u,)exp(if,z)+ D, (k,,0)(2k B, u,)exp(~if,z), (483)

or (when z > ¢)

_T.(z,k,,0)

T(k,,w)= P ) A, (kx,a))(— Qi Ay =20 1y — Ak2 )exp(i a,z)+

B, (k,,0)(- A, - 202 i, — Ak Jexp(-ic,2) +
C; (k,,0)(=2k, B ;) exp(ifs2) + Dy (k,, 0)(2k, Bapiy Y exp(-ifyz).  (484)
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Figure 19 is a plot of the displacement in the z-direction (normal) divided by normal
pressure versus wavenumber in the x-direction at a forcing frequency of 500 Hz evaluated at z =
- d. In this example, the sum of the thickness of the three plates is very small (2 = 0.045 m). The
solid line represents the thick plate theory using three plates (equation (484)) and the x’s
represent the thin plate theory (equation (68)) using % = 0.045 m. Additionally, the material
properties of the three (thick) plates are identical so that a direct comparison between the thick
and thin plate theories can be made using only a single thin plate. Parameters used to formulate
this model are: bottom of plate 1 () is -0.045 m, intersection of plates 2 and 1 (b) is -0.030 m,
intersection of plates 3 and 2 (c) is -0.015 m, top of plate 3 (d) is 0 m, Young’s modulus (E) is
13.2¢9 (1+0.03i) N/m?, Poisson’s ratio (v) is 0.30, and density of the plate (p) is 1938 kg/m>.
Only positive values of wavenumber are shown, as the function is symmetric about k = 0. Note
that there is almost complete agreement between the thick plate theory using three similar thick
plates and the thin plate theory using one plate for this specific example. Figure 20 is a plot of
the displacement in the z-direction (normal) divided by normal pressure versus wavenumber in
the x-direction at a forcing frequency of 500 Hz evaluated at z = d. In this example, the sum of
the thickness of the three plates is very small (4 = 0.0032 m). The solid line represents the thick
plate theory using three plates (equation (484)) and the x’s represent the thin plate theory
(equation (68)) using & = 0.0030 m. Additionally, the material properties of the three (thick)
plates are extremely dissimilar so that a direct comparison between the thick and thin plate
theories can be made using only a single thin plate with the thickness of the stiff thick plate (h =
0.0030 m). Parameters used to formulate this model are: bottom of plate 1(a) is -0.0032 m,
intersection of plates 2 and 1 (b) is -0.0031 m, intersection of plates 3 and 2 (¢) is -0.0030 m, top

~of plate 3 (d) is 0 m, Young’s modulus of plate 3 (E5)is 13.2¢9 (1+0.03i) N/m?, Young’s
modulus of plates 2 and 1 (E, and E,) is 13.2¢4 N/m?, Poisson’s ratio of plates 1, 2, and 3 (v)

is 0.30, and density of plates 1, 2, and 3 (p) is 1938 kg/m>. Only positive values of wavenumber

are shown, as the function is symmetric about ¥ = 0. Note that there is almost complete
agreement between the thick plate theory using three dissimilar thick plates and the thin plate
theory using one plate (matched to the stiff plate parameters) for this specific example. Figure
21 is a plot of the wavenumber-frequency (k) surface of the system using the thick plate
equations of motion (equation (484)) evaluated at z = d. The first plate is a stiff material and the
- parameters of this plate are: bottom of the plate (a) is -0.08 m, top of the plate (b) is -0.06 m,

Young’s modulus of the plate (E;) is 4.55¢10 (1+0.03i) N/m?, Poisson’s ratio of the plate (v, )
is 0.30, and density of the plate (p,) is 7700 kg/m>. The second plate is a soft material and the
parameters of this plate are: bottom of the plate (b) is -0.06 m, top of the plate (¢) is -0.01 m,
Young’s modulus of the plate (E,) is 1€9(1+0.151) N/m?, Poisson’s ratio of the plate (v,) is
0.45, and density of the plate (0, ) is 1200 kg/m>. The third plate is a stiff material and the
parameters of this plate are: bottom of the plate (c)is -0.01 m, top of the plate (d) is 0 m,
Young’s modulus of the plate ( E;) is 13.2¢9 (1+0.03i) N/m?, Poisson’s ratio of the plate (v;) is

0.30, and density of the plate (p5) is 1938 kg/m>. The color scale to the right of the plot is in

decibels. All values greater than -190 dB are displayed as -190 dB and all values less than -220
dB are displayed as -220 dB.
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Figure 19. Transfer Function of a Triple Plate with No Fluid Load
(Equation (481)) Using Similar Material Properties at 500 Hz
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8. TRIPLE PLATE WITH A FLUID LOAD

The sixth transfer function derived is a triple plate with a fluid load. The applied load is

modeled as an incident pressure wave in the fluid at definite wavenumber and frequency at
location z = d, as shown in figure 22. The normal and tangential stresses in the system at the
boundary z = d are

rzz(x,d,t)=(A3+2y3)‘9“z("’d’t)+A3 o, (x,d,1) =—p,(x,d.1), (485)
& ox
and
£ (1) = m[aux(x,d,t) . 3uz(x,d,t)]= 0. 436)

& 0

where the subscript 3 denotes plate 3. The interface between plates 3 and 2 requires four
equations. The first two are displacement constraints, which are

u,(x,c, t)[p]ate , = U (%6, t)lpme 5 (487)
and
=u, (x, c,z,‘)]platez . (488)
The second two are stress constraints, which are
T (X0t )Iplate?: Ttz plate2 ’ (489)
and
T (x’ c t)lplate3 T plate2 ° (490)

The interface between plates 2 and 1 requires four equations. The first two are dlsplacement
constraints, which are

Uy (x’b’t)lplatez =U, (x’-b’t)lplatel ’ (491)
and

u, (x,zb,t)|platez =u, (x,b,t)|platel . (492)
The second two are stress constraints, which are

Ta (x.b, t)|plate2 =Tz (x.b, t)lplate] ’ (493)

63




Fluid

Acoustic Load PI(kx’ W) . /

//‘ /’\x //

z=c Plate 3

z=b Plate 2

z=a / Plate 1

—~

Figure 22. Triple Plate with Fluid Load

and

T (0D.1)| ey =T (2,5,0) ate1 - (494)
Finally, the normal and tangential stresses in the system at the boundary z = g are

T = O + 2u) 220D | e (495)

' & ‘o
and
dux (x,a,t)  duz(x,a.t
sz(x,a,t)=,u1{ x (%0 )+ z(xa )-|=0 (496)

% x |

where the subscript 1 denotes plate 1.
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Combining equations (75) - (78) and (485) - (496) yields the twelve-by-twelve linear system of

equations

Ax=Db,

where the entries of equation (497) are

2
w
A =[— oA, — 207y — Ak +£—f—3]exp(ia3d),
Y

' w’a
A, = [~ oA, =203 Uy — Ask? — pf—y?— exp(-ia,d),

2
Pk, i
A=\ =2k By + S " ]exp(1ﬁ3d),

2
o0’k

An =0,

A1,12 =0,
Ayy = (= 2p5k,05 Jexpliasd),

Ay = (25,0 Jexp(-iand),

(497)

(498)
(499)
(500)

(501)

(502)
(503)
(504)
(505)
(506)
(507)
(508)
(509)
(510)

(511)
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66

A= (us2 - ok JexpiBsd)
A4 = (:“3[332 ~ usk? )exp(—iﬁ3d ),
Ay5=0,

Aye = 0,

Az,7 =0,

Az,s =0,

Az@ =0,

Ay10=0,

Ay =0,

Ay = (i )expiase),
Ay, = (—ioz3 )exp(—i 05C),
As = (ik, Jexp(Bsc) ,
As 4 = (ik, Jexp(-ifs0),
A5 = (— 10, )exp(iazc) ,
Az 6 = (i0 Jexp(iae),
A3 =(-ik, Jexp(iByc) ,
Ay = =ik, Jexp(-ifyc),

A3,9 = O 5

(512)
(513)
(514)
(515)
(516)
(517)
(518)
(519)
(520)
(521)
(522)
(523)
(524)
(525)
(526)
(527)
(528)
(529)

(530)



A,y = (ik, Jexpioge),
A, =ik, Jexp(-ige)
Ay =(iB; Jexp(psc)
Ay s = (iBs)exp(-iBsc),
A, s = (-ik, Jexpliayc),
Ay ¢ =(-ik, Jexp(-iayc),
Ay = (iB,)exp(Bye).
 Ayg = (-8, )exp(-iBse) ,

Ay =0,

Ay = (— oAy =203y — Ak )exp(i 05¢),
A;, = (a2, - 2020, - k2 Jexp(-ieye),
As3 = (= 2k, B3 i3 Jexp(iBse)

Asy= (2K, Bs 15 Jexp(-iBsc) ,

(531)
(532)
(533)
(534)
(535)
(536)
(537)
(538)
(539)
(540)
(541)
(542)
(543)

(544)

(545)

(546)
(547)
(548)

(549)
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68

Ass = (afﬁq +203 1, + Ak2 )exp(iazc) ,

Asg= (af/lz + 2063#2 + lzkf )ﬁXP(“i ayc),

As7 = (2k, Bkt )exp(iBse).,

Asg = (= 2k, B, Jexp(-iBy0)
As9=0,

As10=0,

Asn =0,

As;p =0,

Ay = (= 23k, 00 Jexpliose),
Agz = (2psk,05 Jexp(—iatse) ,
Ag 5 = (usB? = k2 )exp(psc).
Ags = (3% = sk Jexp(-iBsc)
Ass = (2u5k,0, Jexpliane) ,

Ags = (= 212k,0 Jexp(-iay0),
Agy = (- 1B + k2 Jexp(iByc)

Agg = (_ 1, B2 + Hok2 )CXP(“‘iﬁp_C) ,

(550)

(551)

(552)

(553)

(554)

(555)

(556)

(557)

(558)

(559)

(560)

(561)

(562)

(563)

(564)

(565)

(566)

(567)

(568)



. A7’4 =0,

A s =(io, Jexplia,b),

A ¢ = (-ie, Jexp(=ia,b),

Ay =ik, Jexp(iB,b),
Ay g = ik, Jexp(-if,b).
Ao =(-i0y Jexpliyb),
Ajo= (ioc1 )exp(—ialb) ,

Ay = (-ik, JexpGBb),

Agp = (‘ ik, )exP(—iﬁlb) )

Ags = (ik, Jexp(ab),
- Ay = ik, Jexp(-iayb),

Ay, = (‘iﬁz )eXP(iﬁzb) )

(569)
(570)

(571)

572)

(573)

(574)

(575)

(576)

(577)

(578)
(579)

(580)

(581)

(582)
(583)
(584)
(585)
(586)
(587)

(588)
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70

Ay s = (i, Jexp(-iB,b),
Ay =(-ik, Jexp(iasb),
Ag 1 = (-ik, Jexp(-iayb),
Ag 1y = (1B, Jexp(Bib).,
Ay 12 = (=B Jexp(-=iBib),

a3 A, - 203, — Ask? Jexpic,b),

I

Ay s
Ag g
Ag7 = (= 2k, B, 1, )exp(iB,b) ,

Agg = (2k By tty )exp(—iB,b),

Ay =0ty + 20ty + Aok JexpGiosb),
Ay o = (05.2)\1 +20p, + Ak2 )éxp(—i a,b),
Ag 1 = (2k, By, Jexp(iByb),

Ag12 = (- 2k, By Jexp(=ipib),

Ap1 =0,

A, = 0,

(_
(024, - 2024, - A,k Jexp(-iayb),

(589)
(590)
(591)
(592)
(593)
(594)
(595)
(596)
(597)
(598)
(595)
(600)
(601)
(602)
(603)
(604)
(605)
(606)

(607)



A3 =0,

vA10,4 =0,

Ags = (- 2k, )expliogb),
Ao = (2urk, 0, Jexp(-iah),
A7 = (,“zﬁ 7 - ﬂzkf )exP(isz) )
Aros = (48 - A2 exp(-iB,0)
Ay = (k0 Jexpliasb),

Ajgno = (-~ 2pk,0n Jexp(-ioyb),
Apq = (— W BE + ik} )exP(iBIb) ,

Az = (‘ .“1.312 + .u1k,3 )eXP(—iﬁlb) )

Ao = 022 - 202, - k2 Jexplioya),

(608)
(609)
(610)
(611)
(612)
(613)

(614)

(615)

(616)
(617)
(618)
(619)
(620)
(621)
(622)
(623)
(624)
(625)

(626)

71




72

Ao = ("0“2)\1 =20 py — Ak} )exp(—iocla) ,
Apn = (~ 2k, By, Jexp(iB,a),
Az = (2K, By, )CXP(‘iﬁla) )
Apy =0,

Ap, =0,

Apsz =0,

Ay, =0,

Aps =0,

A =0,

A7 =0,

Apg =0,

A = (- 2mk,0n Jexplioga),
A0 = 2k, 04 exp(-icya)
Apqy = (,“1[312 - #1k,3 )exp(iﬂla) )
Ay = (,u]ﬁ P - ﬂ1k3 )exp(—iﬂla) s
X, = Ak, 0),

Xy = By(k,, ),

x3; = CGy(k,,w),

x4,1 = D3(kx7w) >

(627)
(628)
(629)
(630)
(631)
(632)
(633)
(634)
(635)
(636)
(637)
(638)

(639)

(640)

(641)
(642)
(643)
(644)

(645)



and

X5y = Ay (k,, ),
xg1 = By (k,, @),
X71 = Cy(ky, @),
x5, = D, (k,,0),
Xo1 = A (k,,0),
X0, = By (k,,0),
xyy =G (k,, @),
J‘»12,1 =D (k,,0),
by, =-2P;(k,,w)exp(-iyd),
b,; =0,

b3,1 =0,

by, =0,

bs; =0,

b6,1 = O N

b10,1 =0,

b11,1 =0,

(646)
(647)
(648)
(649) |
(650)
(651)
(652)
(653)
(654)
(655)
(656)
(657)
(658)
(659)
(660)
(661)
(662)
(663)

(664)
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by, =0. (665)

Using equations (498) - (665), the solution to the constants A, B,, C;, D;, 4,, B,, C,, D,,
A;, B;, C;, and Dj can be found by

x=A"p. (666)

Additionally, the transfer function between the normal displacement at location z (when z < b)
and the structural load can be written as

Tk, 0) = e oke®)
P, (k,w)exp(-iyd)

=A (k,,w)ic; exp(i,z) -

B, (k,,w)ic, exp(—i,z) +

C, (k. w)ik, exp(ipB,z) + D, (k,, w)ik, exp(-if,2), (667)

or(whenz>bandz<c)

U.(z,k,,0)

T = & ) explivd)

= A, (k,,m)ic, exp(ict,z) -

B, (k,,m)ia, exp(-ia,z) +

C,(k,,w)ik, exp(iB,z) + D, (k ,w)ik  exp(-if,z), (668)

of (when z > ¢)

Tk, 0) = —2= &k ®

= = Ay(k,,0)i0; exp(ia,z) —
Bk )expaipd) O xR

B,(k,,w)io, exp(-io,z) +

C,(k,,w)ik, exp(if,z) + D, (k ,w)ik, exp(-if,z). (669)

The transfer function between the normal stress at location z (when z < b) and the structural load
can be written as
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T(k, 0) = —1z&ko®)

B = Ak, 0)\-alh - 202w - Ak? expia, z) +
P, (k,,0)exp(-iyd) 3 )( 1 1Fh lx)exp(l 12)

B,(k, )~ a4, - 202 u, — A k2 Jexp(-ic,z) +

C, (k,,0)(=2k, B,u,yexp(ip,2) + D, (k ., w)(2k B, 1, ) exp(-ifB, z), (670)

or (whenz>bandz<¢)

Tk, ) = —T=@ko® A, (k,, ) 022, — 2021, — A,k2 Jexplic,z) +

P, (k,.0)exp(-iyd)
B, (k, ’w)(“ a3 A, =205 1, = Ak )exP(_iazz) +
C, (k,,0) =2k, B,u, )exp(iB,z) + D, (k,,0)(2k, B, 1,) exp(-if,z), (671)

of (when z> ¢)

T,.(z.k, ,)
P, (k,,w)exp(-iyd)

T(k,,0)= = Ay (k, , 0) - 022, 202y — Ask? Jexplios,2) +

B, (k,, )~ a2, — 2021, - Ak Jexp(ict,z) +
C;(k,,0)(=2k, B, 1) exp(ip,;2) + Dy (k,,0)(2k, B, us)exp(-if,z).  (672)

Figure 23 is a plot of displacement in the z-direction (normal) divided by normal pressure
versus wavenumber in the x-direction at a forcing frequency of 500 Hz evaluated at z = d. In this
example, the sum of the thickness of the three plates is very small (1 = 0.045 m). The solid line
represents the thick plate theory using three plates (equation (669)) and the x’s represent the thin
plate theory (equation (107)) using & = 0.045 m. Additionally, the material properties of the
three (thick) plates are identical so that a direct comparison between the thick and thin plate
theories can be made using only a single thin plate. Parameters used to formulate this model are:
bottom of plate 1 (a) is -0.045 m, intersection of plates 2 and 1 () is -0.030 m, intersection of
plates 3 and 2 (c) is -0.015 m, top of plate 3 (d) is 0 m, Young’s modulus (E) is 13.2¢9 (1+0.03i)

N/m?, Poisson’s ratio (v) is 0.30, and density of the plate (p) is 1938 kg/m>. Only positive

values of wavenumber are shown, as the function is symmetric about k = 0. Note that there is
almost complete agreement between the thick plate theory using three similar thick plates and the
thin plate theory using one plate for this specific example. Figure 24 is a plot of the
displacement in the z-direction (normal) divided by normal pressure versus wavenumber in the x
direction at a forcing frequency of 500 Hz evaluated at z = d. In this example, the sum of the
thickness of the three plates is very small (A = 0.0032 m). The solid line represents the thick
plate theory using three plates (equation (669)) and the x’s represent the thin plate theory
(equation (107)) using # = 0.0030 m. Additionally, the material properties of the three (thick)
plates are extremely dissimilar so that a direct comparison between the thick and thin plate
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theories can be made using only a single thin plate with the thickness of the stiff thick plate (h =
0.0030 m). Parameters used to formulate this mode] are: bottom of plate 1 (a) is -0.0032 m,
intersection of plates 2 and 1 (&) is -0.0031 m, intersection of plates 3 and 2 (c) is -0.0030 m, top

of plate 3 (d) is 0 m, Young’s modulus of plate 3 (E;)is 13.2e9 (1+0.03i) N/m?, Young’s
modulus of plates 2 and 1 (E, and E,)is 13.2e4 N/m?, Poisson’s ratio of plates 1, 2, and 3 (v)

is 0.30, and density of plates 1, 2, and 3 (p) is 1938 kg/m>. Only positive values of wavenumber

are shown, as the function is symmetric about k = 0. Note that there is almost complete
agreement at between the thick plate theory using three dissimilar thick plates and the thin plate
theory using one plate (matched to the stiff plate parameters) for this specific example. Figure

25 is a plot of the wavenumber-frequency (k) surface of the system using the thick plate
equations of motion (equation (669)) evaluated at z = d. The first plate is a stiff material and the
parameters of this plate are: bottom of the plate (a) is -0.08 m, top of the plate (b) is -0.06 m,

Young’s modulus of the plate ( E,) is 4.55e¢10 (1+0.03i) N/m?, Poisson’s ratio of the plate (v,)

is 0.30, and density of the plate ( p,) is 7700 kg/m>. The second plate is a soft material and the
parameters of this plate are: bottom of the plate (b) is -0.06 m, top of the plate (¢) is -0.01 m,
Young’s modulus of the plate (E,) is 1€9(140.15i) N/m?, Poisson’s ratio of the plate (v,) is
0.45, and density of the plate ( p,) is 1200 kg/m?. The third plate is a stiff material and the
parameters of this plate are: bottom of the plate (c) is -0.01 m, top of the plate (d) is 0 m,
Young’s modulus of the plate ( E;) is 13.2e9 (1+0.03i) N/m?, Poisson’s ratio of the plate (v;) is

0.30, and density of the plate ( p;) is 1938 kg/m>. The color scale to the right of the plot is in

decibels. All values greater than -190 dB are displayed as -190 dB and all values less than -220
dB are displayed as -220 dB.

Figures 26, 27, and 28 are plots of stress in the z-direction (normal) divided by normal
pressure versus wavenumber in the x-direction at forcing frequencies of 1000, 3000, and 6000 Hz
evaluated at z = (b+c)/2. This evaluation point is the middle of the second plate. The first plate is
a stiff material and the parameters of this plate are: bottom of the plate () is -0.279 m, top of the

plate (b) is -0.203 m, Young’s modulus of the plate (E,)is 2.07e11 N/m?, Poisson’s ratio of the

plate (v, ) is 0.30, and density of the plate (p,) is 7830 kg/m>. The second plate is a soft
material and the parameters of this plate are: bottom of the plate (b) is -0.203 m, top of the plate
(¢) is -0.076 m, Young’s modulus of the plate ( E, ) is 1¢7(1+0.30i) N/m?, Poisson’s ratio of the

plate (v, ) is 0.40, and density of the plate ( p, ) is 1000 kg/m>. The third plate is a soft material
and the parameters of this plate are: bottom of the plate (c) is -0.076 m, top of the plate (d) is 0
m, Young’s modulus of the plate ( E,) is 57 (1+0.151) N/m?, Poisson’s ratio of the plate (v;) is

0.45, and density of the plate ( p,) is 1200 kg/m?. "The compressional wavespeed of the fluid
(Cf) 1s 1500 m/s and the density of the fluid (pf) is 1025 kg/m3.
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Figure 23. Transfer Function of a Triple Plate With Fluid Load
(Equation (669)) Using Similar Material Properties at 500 Hz
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Figure 27. Transfer Function of a Triple Plate with Fluid Load
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Figure 28. Transfer Function of a Triple Plate with Fluid Load
(Equation (671)) at 6000 Hz




9. SUMMARY

The transfer functions for six different thick plate configurations were derived. This
included a single thick plate, a single thick plate with a fluid load, a double thick plate, a double
thick plate with a fluid load, a triple thick plate, and a triple thick plate with a fluid load.
Validation comparisons were made using similar transfer functions derived with the thin plate
theory, the results of which are that for small plate thicknesses, these transfer functions are nearly
identical.
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